The modern generation of data storage technology brings new challenges to existing materials for low power data processing, reliable, fast and sizable transfer of data1. In this context, artificial multiferroic composites based on ferromagnetic (FM) and ferroelectric (FE) phases that exhibit strong magnetoelectric coupling, hold promise for designing new generation memory devices with several advantages. Multiferroic composites offer innovative approaches for non-volatile memory devices as compared to their semiconductor transistor-based competitors2. The organic thin memories are particularly favorable due to their environment friendly nature, low fabrication cost and mechanical flexibility3. Here, a room temperature paradigm two level nonvolatile memory operation have been demonstrated by utilizing the nonlinear magnetoelectric effects in flexible multiferroic SmFeO3/P(VDF-TrFE) nanocomposite lms. Strain induced interface interactions between ferromagnetic and ferroelectric phases in SmFeO3/P(VDF-TrFE) nanocomposite lms allow electric field controlled magnetization behaviour. The sign of magnetoelectric coupling coefficient (α) for the composite films can be repeatedly switched between positive and negative by applying electric fields. This can be used to store binary information for non volatile memory devices. The magnetoelectric response and the required voltage for switching of α can be tuned by varying the magnetic phase fraction (SmFeO3 nanoparticles) in nanocomposite films. Hence, flexible magnetoelectric SmFeO3/P(VDF-TrFE) nanocomposite lms can be utilized for nonvolatile memory applications with practical characteristics such as simple compact structure, easy reading/ writing operation, fast speed and low power consumption.