In this paper a computational nuclear magnetic resonance (NMR) study and chemisorption energies DEads are performed to investigate the electronic structure properties of arm-chair (4,4) single -wall carbon nanotube (N2-SWCNTs). In summary, the optimized chemisorption rates are calculated. The study performed by using density function theory (DFT) and hartreefock (HF) methods. The untidy nature of these "chemical shift" interactions caused most physicists to lose interest, leaving the field to be developed by chemists. Chemisorption is treated within the Anderson–Newns model, which takes account of Coulomb interaction between adsorbate electrons. The structural forms are firstly optimized and then the calculated s tensors in the optimized structures are converted to chemical shielding isotropic (s iso) and chemicalshielding anisotropic ( D s ) and asymmetric ( j m ) parameters. The computations were fully implemented by Gaussian 98 Software package