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ABSTRACT 
 
Polychlorinated aromatic compounds represent a large group of industrial and byproduct compounds which are 
resistant to chemical and biological degradation and highly toxic. QSAR analysis was performed on 74 molecules of 
three classes of polychlorinated aromatic compounds (polychlorinated dibenzo-p-dioxin (PCDDs), polychlorinated 
dibenzofuran (PCDF) and polychlorinated biphenyl (PCB)). A large number of about 1700 molecular descriptors 
was obtained from DFT (B3LYP/6-311+G*) level of calculation for each molecule and used in Genetic function 
algorithm (GFA) approach to generate 5 models, out of which the one with the highest statistical significance 
(Model-1: R2 = 0.9673, R2

adjusted = 0.9592, R2
cv = 0.9402, R2

pred. = 0.7209, F-test = 118.48, LOF = 0.4377) was 
selected as the best. From the model generated, it seems to be very clear that polarizability, SP-7, ETA_Epsilon_5, 
GRAVH_3, and MOMI-R contribute positively to the toxicity of these compounds while MaxHBint5, ETA_dApha_B, 
ETA_Epsinlon-2, n5Ring and GRAV_2 contribute negatively. This validated model brings important insight to aid 
the prediction and identification of other toxic polychlorinated aromatic compounds.  
   
Keywords: QSAR, Genetic Function Algorithm, Molecular descriptors, Polychlorinated aromatic compounds, 
toxicit of polychlorinated compounds. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

In  recent  years,  due  to  the  increasing  impact  the pharma and food chemistry in special  have on the  human and 
environment life, the scientific and economical interest forced the international communities (OECD- Organization 
of economic cooperation and development, EUC-European Commissions,  just  to  name  a  few)  to  adopt 
memorandums regulating the design and use of chemicals towards  lower  toxicity  and  higher  biodegrability [1]. 
Polychlorinated dibenzofurans (PCDFs), polyhalogenateddibenzo-p-dioxins (PHDDs) and polychlorinated 
biphenyls (PCBs) are chemicals of concern because of their elevated concentrations in adipose and hepatic tissues 
and their persistence in an individual for extended lengths of time. With heavier congeners, it may stay with an 
individual for decades because they are resistant to metabolic, thermal and environmental breakdown. 
Polychlorinated aromatic compounds are not commercially produced but are formed as trace amounts of undesired 
impurities in the manufacture of other chemicals [2-3].  
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The chemical/industrial sources of these chemicals include the manufacture of chlorinated compounds such as 
phenoxy herbicides, chlorinated benzenes, chlorinated aliphatic compounds, chlorinated catalysts and halogenated 
diphenyl ethers, PCBs, the pulp and paper industry, and dry cleaning distillation residues [4]. They could also be 
produced when organic compounds containing chlorine are burned and a series of chemical reactions take place 
under specific conditions [5]. These combustion sources include incinerators for municipal solid waste and 
hazardous waste, steelworks, metal refinery factories, power stations, coal and oil industries, sintering plants, 
cement, lime, glass and brick production, and recycling plants [6,7].The use and disposal of these compounds can 
cause the release of dioxins into the environment. 
 
Polychlorinated aromatic compounds are considered as persistent and widespread environmental contaminants with 
high hydrophobicity, which can cause a great diversity of biological effects including hepatotoxicity, endocrine 
effects, immunotoxicity, body weight loss, teratogenicity, carcinogenicity and the induction of diverse enzymes such 
a aryl hydrocarbon hydroxylase (AHH) and 7-ethoxyresorufinOdeethylase (EROD) in various organisms [8,9].   
 
 Food is  the  major  source  for  human  exposure  to  PCBs  and  dioxins, especially fatty foods: dairy products 
(butter, cheese, fatty milk), meat, egg, and fish. Food of animal origin accounts for 95 % of total exposure. The 
current average body burden of dioxins is about 5–50 ng/kg (as WHO TEq in fat; pg/g = ng/kg) or 100–1000 ng 
(WHO-TEq) per person which is close to the lowest concentrations possibly causing health effects. Some subgroups 
within the society (e.g., nursing babies and people consuming plenty  of  fish)  may  be  exposed  to  higher  than  
average  amounts  of these compounds and are thus at greater risk. Dioxin concentrations have been screened in five 
WHO international studies, and in Central Europe the concentrations  have  decreased  in  breast  milk  from  about  
40  ng/kg  (as TEq in milk fat) in 1987 to below 10 ng/kg in 2006. PCBs have decreased at about the same rate. The 
decrease in environmental concentrations is due to cessation of PCB use and improved incineration technology [10].  
Due to the problems of assessing the fate and toxicity of large number of chemicals, alternative method has been 
sought to classical in vivo animal texting.  In the area of computer – aided toxicity prediction, quantitative structure 
activity relationship (QSAR) have been seen as an attractive method for toxicity and fate assessment [11].The study 
of the quantitative relationship between toxicity/activity and molecular structure (QSTR/QSAR) is an important area 
of research in computational chemistry and has been widely used in the prediction of toxicity and other biological 
activities of organic compounds [12, 13].  
 
In this study, genetic function approximation (GFA) which is a statistical modeling algorithm that builds functional 
models of experimental data. Since its inception, several applications of this algorithm in the area of quantitative 
structure–activity relationship modeling have been reported [14]. The genetic function approximation (G FA) 
algorithm is a genetic algorithm (GA) derived from the previously reported G/SPLINES algorithm and has been 
recently applied to the generation of QSAR models [15-17]. The main purpose of this work is to find out how 
accurate QSAR analysis (using Material studio 7.0 software and the statistical tool Genetic functional algorithm) 
predicted the toxicity of polychlorinated aromatic compounds, and also to find out the descriptors responsible for 
producing such toxicity other than the once reported by [18, 19].  
 

MATERIALS AND METHODS 
 
QSAR METHODOLOGY 
Chemical data and biological activity 
A data set of 74 molecules (25 PCDDs, 34 PCDFs and 15 PCBs) has been taken from the literature [20-22]. The 
toxicities of the compounds expressed in EC50 have been converted to log EC50. The structures of the compounds 
were drawn using Chemsketch software. The general structural formulae of the three series are shown in Fig.2.  
IUPAC names and toxicity data of all the compounds are listed in Table-1. 
 

 
Polychlorinated dibenzo-P-dioxins (PCDDs) 
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Polychlorinated biphenyls (PCBs) 

 

 
Polychlorinated dibenzofurans (PCDFs) 

Fig.2: General structural formulae for the compounds (PCDDs, PCDFs and PCBs) 
 

Table 1: Experimental Biological Activities in pEC50 of the compounds, (PCDDs, PCDFs and PCBs) 
 

S/N IUPAC NAME pEC50 
1 2,3,7,8 Tetrachlorodibenzo-p-dioxin 8.00 
2 1,2,3,7,8 pentachlorodibenzo-p-dioxin 7.10 
3 2,3,6,7 Tetrachlorodibenzo-p-dioxin 6.80 
4 2,3,6 Trichlorodibenzo-p-dioxin 6.66 
5 1,2,3,4,7,8Hexachlorodibenzo-p-dioxin 6.55 
6 1,3,7,8-Tetrachlorodibenzo-p-dioxin 6.10 
7 1,2,4,7,8-pentachlorodibenzo--dioxin 5.96 
8 1,2,3,4-Tetrachlorodibenzo-p-dioxin 5.89 
9 2,3,7-Trichlorodibenzo-p-dioxin 7.15 
10 1,2,3,4,7-pentachlorodibenzo-p-dioxin 5.19 
11 1,2,4-Trichlorodibenzo-p-dioxin 4.89 
12 2,8-dichlorodibenzo-p-dioxine 5.49 
13 1,2,3,4,6,7,8,9-Octachlorodibenzo-o-dioxin 5.00 
14 1-chlorodibenzo-p-dioxin 4.00 
15 2,3,7,8-Tetrabromodibenzo-p-dioxin 8.82 
16 2,3- Dibromo 7,8-chlorodibenzo-p-dioxin 8.83 
17 2,8- Dibromo -3,7-dichlorodibenzo-p-dioxin 9.35 
18 2,Bromo-3,7,8-trichlorodibenzo-p-dioxin 7.94 
19 1,3,7,9-Tetrabromodibenzo-p-dioxin 7.03 
20 1,3,7,8-Tetrabromodibenzo-p-dioxin 8.70 
21 1,2,4,7,8-Pentabromodibenzo-p-dioxin 7.77 
22 1,2,3,7,8-Pentabromodibenzo-p-dioxin 8.18 
23 2,3,7-Tribromodibenzo-p-dioxin 8.93 
24 2,7-Dibromodibenzo-p-dioxin 7.81 
25 2-Bromodibenzo-p-dioxin 6.53 
26 1-chlorodibenzofuran 4.53 
27 2-chlorodibenzofuran 3.55 
28 3-chlorodibenzofuran 4.38 
29 4-chlorodibenzofuran 3.00 
30 2,3-Dichlorodibenzofuran 5.36 
31 2,6-dichlorodibenzofuran 3.61 
32 2,8-Dichlorodibenzofuran 5.05 
33 1,3,6-Trichlorodibenzofuran 5.36 
34 1,3,8-Trichlorodibenzofuran 4.07 
35 2,3,4-Trichlorodibenzofuran 4.72 
36 2,3,7-Trichlorodibenzofuran 7.10 
37 2,3,8-Trichlorodibenzofuran 6.00 
38 2,6,7 Trichlorodibenzofuran 6.35 
39 2,3,4,6 Tetrachlorodibenzofuran 6.46 
40 2,3,4,8-Tetrachlorodibenzofuran 6.70 
41 2,3,7,8-Tetrachlorodibenzofuran 7.39 
42 1,2,4,8-Tetrachlorodibenzofuran 5.00 
43 1,2,4,7,9-Pentachlorodibenzofuran 4.70 
44 1,2,3,7,8-Pentachlorodibenzofuran 7.13 
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45 1,2,4,7,8-Pentachlorodibenzofuran 5.89 
46 2,3,4,7,8-Pentachlorodibenzofuran 7.82 
47 1,2,3,4,7,8-Hexachlorobenzofuran 6.64 
48 1,2,3,6,7,8-Hexachlorobenzofuran 6.57 
49 2,3,4,67,8-Hexachlorobenzofuran 7.33 
50 1,2,4,6,7,9-Hexachlorodibenzofaran 5.08 
51 2,3,6,8-Tetrachlorodibenzofuran 6.66 
52 1,2,3,6-Tetrachlorodibenzofuran 6.46 
53 1,2,3,7-Tetrachlorodibenzofuran 6.96 
54 1,3,4,7,8-Pentachlorodibenzofuran 6.70 
55 2,3,4,7,9-Pentachlorodibenzofuran 6.70 
56 1,2,3,7,9-Pentachlorodibenzofuran 6.40 
57 Dibenzofuran 3.00 
58 2,3,4,7-Tetrachlorobiphenyl 7.60 
59 1,2,4,6,8-Pentachlorobiphenyl 5.51 
60 2,3,4,4’-Tetrachlorobiphenyl 4.94 
61 3,3’,4,4’-Tetrachlorobiphenyl 6.15 
62 3,4,4’,5-Tetrachlorobiphenyl 4.55 
63 2’,3,4,4’,5-Pentachlorobiphenyl 4.85 
64 2,3,3’,4,4’-Pentachlorobiphenyl 5.37 
65 2,3’,4,4’,5-Pentachlorobiphenyl 5.04 
66 2,3,4,4’,5-Pentachlorobiphenyl 5.39 
67 3,3’4,4’5-Pentachlorobiphenyl 6.92 
68 2,2’4,4’,5,5’-Hexachlorobiphenyl 4.26 
69 2,3,3’,4,4’,5-Hexachlorobiphenyl 5.15 
70 2,3’,4,4’,5,5’-Hexachlorobiphenyl 4.80 
71 2,3,3’,4,4’,5’-Hexachlorobiphenyl 5.30 
72 2,2’,4,4’-Tetrachlorobiphenyl  
73 2,3,4,5-Tetrachlorobiphenyl 3.85 
74 2,3’,4,4’,5’,6-Hexachlorobiphenyl 4.00 

 
Geometry optimization and calculation of molecular descriptors 
Complete geometry optimization of the 74 molecules of polychlorinated aromatic compounds was performed using 
Spatan “14”1.1.2 software. Density functional theory (DFT) was used as the level of theory, 6-31G* as the basis set 
and MMFF as Geometry. The second step in developing the model was the numerical description of molecular 
structures by defining descriptors. These descriptors were responsible for encoding important features of the 
structures. A large number of about 1700 molecular descriptors (0D, 1D, 2D and 3D) were calculated. Quantum 
chemical descriptors and some of the constitutional descriptors were calculated using Spatan “14”1.1.2 software 
while topological descriptors and geometrical descriptors were calculated using PaDel-Descriptor 2.18 software.  
 
Statistical method/correlation analysis 
Because of the large number of the descriptors calculated, a stepwise multiple linear regression procedure on the 
forward-selection and backward-elimination method was used for the selection and elimination of the descriptors. 
From the square correlation matrix obtained, pairs of variables that falls within the range 0.35 ≤ r ≤ 0.9 were 
selected and used by the statistical tool to generate the models.  
 
Development of QSAR models 
Genetic Function Algorithm (GFA). 
In this work, all the models were developed using genetic function approximation (GFA) technique. The genetic 
function approximation algorithm was initially anticipated by: (1) Holland’s genetic algorithm and (2) Friedman’s 
multivariate adaptive regression splines (MARS) algorithm. In this algorithm, an individual or model is represented 
as one dimensional string of bits. A distinctive feature of GFA is that it produces a population of several models 
instead of generating a single model, as do most other statistical methods. Genetic algorithm makes superior models 
to those developed using stepwise regression techniques because it selects the basis function genetically [23].  
The GFA algorithm approach has several important advantages over other techniques: (1) it builds multiple models 
rather than a single model. (2) It automatically selects which features are to be used in the models. (3) It is better at 
discovering combinations of features that take advantage of correlations between multiple features. (4) It 
incorporates Friedman’s lack-of fit (LOF) error measure, which estimates the most appropriate number of features, 
resists over fitting, and allows control over the smoothness of fit. (5) It can use a large variety of equation term types 
in construction of its models, e.g., splines, step functions, high order polynomials. (6) It provides, through study of 
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the evolving models, additional information not available from standard regression analysis, such as the preferred 
model length and useful partitions of the data set [24-25].  
 
QSAR analysis in computational research is responsible for the generation of models to correlate biological activity 
and physicochemical properties of a series of compounds. The underlying assumption is that the variations of 
biological activity within a series can be correlated with changes in measured or computed molecular features of the 
molecules. In the present study, QSAR model generation was performed by GFA technique. The application of the 
GFA algorithm allows the construction of high-quality predictive models and makes available additional 
information not provided by standard regression techniques, even for data sets with many features [27-27]. GFA was 
performed using 100,000 crossovers, smoothness value of 2.0 and other default settings for each combination. The 
number of terms in the equation was fixed to 10 including constant in the training set. The set of equations generated 
were evaluated on the basis of some statistical parameters. 
 
Statistical/Validation Parameter 
Lack of fit (LOF)  
A “fitness function” or lack of fit (LOF) was used to estimate the quality of the model, so that best model receives 
the best fitness score. The error measurement term is determine by equation-1    
             

��� = ���
(	
��
∗�� )�   … … … (1)     

 
where ‘c’ is the number of basic functions (other than constant term); ‘d’ is smoothing parameter (adjustable by the 
user); ‘M’ is the number of samples  in the training set; LSE is least squares error and ‘p’ is the total numbers of the 
features contained in all basis functions [28]. 
 
Coefficient of multiple determination (R2) 
To assess the goodness-of-fit, the coefficient of multiple determination is used. R2 estimates the proportion of the 
variation in the response that is explained by the predictor. 
 

�� = 1 − ∑ (��
���)�����
∑ (��
��)����

... … … (2) 

 
Where yi is the observed dependent variable, �� the mean value of the dependent variable and �� the calculated 
dependent variable. If there is no linear relationship between the dependent variable and the descriptors then R2 = 
0.00; if there is a perfect fit then R2 = 1.00. R2 values higher than 0.5 indicates that the explained variance by the 
model is higher the unexplained one. 
 
Adjusted R2 (R2

adj) 
The value of R2 can generally be increased by adding additional predictor variables to the model, even if the added 
variable does not contribute to reduce the unexplained variance of the dependent variable. It follows R2 should be 
used with caution. This can be avoided by using another statistical parameter the so-called adjusted R2 (R2

adj). 
 

� !"� = 1 − (1 − ��)(#
	#
$)… … … (3) 
 
R2

adj is interpreted similarly to the R2 value, except that it takes into consideration the number of degrees of freedom. 
The value of R2adj decreases if an added variable to the equation does not reduce the unexplained variable. 
 
Standard error of estimate (SEE) 

SEE = 	(∑ (��
���)�����
(#
($)	)) … … … (4) 

 
The smaller the value of SEE is, the higher the reliability of the prediction. However, it is not recommended to have 
the standard error of estimate smaller than the experimental error of the biological data, because it is an indication of 
over fitted model. 
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F-value 
The F-value is determined using equation-6 

� = ∑ (��
��)� ($
	)⁄���+
∑ (��
���)� (#
$)⁄����

 … … … (6) 

 
The higher the F-value, the greater the probability that the equation is significant [29].  
 
Validation Parameters 
Cross-validation squared correlation coefficient R2 (R2

cv) 
 
Cross-validation squared correlation coefficient R2 (LOO-Q2) is calculated according to the formula: 

,� = 1 − ∑(-�./

-)�
∑(-
-�)� …  . … … (7) 

 
In Eq. (2), Ypredand Y indicate predicted and observed activity values respectively and 0� indicate mean activity 
value. A model is considered acceptable when the value of Q2 exceeds 0.5. [30]. 
 
In the case of this research, external validation techniques (LMO-Leave Many Out) was applied in which the 23 
compounds of the test set were used for the external validation and the predicted R2 for the validation was calculated 
using equation-2. 
 
Predicted R2 (R2

pred) 
The predictive R2 was calculated based on only molecules not included in the training set (test set). Models are 
generated based on training set compounds and predictive capacity of the models was judged based on the predictive 
R2 (R2

pred) value which was calculated using eqn-5.   
 

�123!� = 1 − ∑(-�./
(4/54)
-4/54)�
∑(-(4/54)
-�4.6�7�78)� … …  …  … (5).  

 
In Eq. (5), 0123!(93:9) and 093:9 indicate predicted and observed activity values respectively of the test set compounds 
and 0�92 ;<;<= indicates mean activity of the training set. For a QSAR model, the value of R2

pred should be more than 
0.5. All the statistical parameters calculated, agree with the criteria reported in Table-2  
 

Table-2: criteria for selection of good model 
 

S/N                  CRITERIA FOR SELECTION OF MODEL 
1 N = number of molecules (> 20 molecules) 
2 K= number of descriptors in a model (statistically N/5 descriptor in a model) 
3 df = degree of freedom (N-K-1) (higher is better).   
4 R2 =coefficient of determination (> 0.7) 
5 R2cv = cross-validation square correlation (> 0.5) 
6 R2

adj = adjusted squared correlation coefficient  (> 0.5) 
7 R2

pred = predicted coefficient of determination (> 0.5) 
8 SEE = standard error of estimate (smaller is better) 
9 F-test = F-test for statistical significance of the model (higher is better, for some set of descriptors and compounds) 

 
RESULTS AND DISCUSSION 

 
Generation of models 
Genetic function approximation was used to performed QSAR regression on 74 molecules of polychlorinated 
aromatic compounds using pEC50 as dependent variable and calculated molecular descriptors as independent 
variables described by the equations in Table-2. 51 molecules were used as training set to generate the 5 models 
which are presented in Table-3 .The remaining 23 compounds were used as test set for external prediction and the 
predicted toxicities are presented in Table-4. Model-1 was selected as the best on the basis of its statistical 
parameters.  
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Table-3. 5 generated models by GFA 
 

No Equation Definition 

1 

Y =  0.317123855 * X26 
+ 2.673194291 * X94 
- 1.361102037 * X144 
- 1.453070371 * X165 
- 96.631409262 * X167 
+ 69.872692578 * X170 
- 7.877708429 * X228 
- 21.439713345 * X277 
+ 124.942300592 * X281 
+ 1.835776438 * X293 
- 631.436918720 

X26 : AA : Polarizability 
X94 : CQ : SP-7 
X144 : EO : maxHBint5 
X165 : FJ : ETA_dAlpha_B 
X167 : FL : ETA_Epsilon_2 
X170 : FO : ETA_Epsilon_5 
X228 : HU : n5Ring 
X277 : JR : GRAV-2 
X281 : JV : GRAVH-3 
X293 : KH : MOMI-R 

2 

Y =  0.337543195 * X26 
+ 1.986019421 * X94 
- 1.841849479 * X144 
- 2.591615577 * X165 
- 105.290996384 * X167 
+ 150.560145568 * X175 
- 8.806840418 * X228 
- 22.985643463 * X277 
+ 135.442609778 * X281 
+ 0.491497214 * X345 
- 657.102081723 

X26 : AA : Polarizability 
X94 : CQ : SP-7 
X144 : EO : maxHBint5 
X165 : FJ : ETA_dAlpha_B 
X167 : FL : ETA_Epsilon_2 
X175 : FT : ETA_Psi_1 
X228 : HU : n5Ring 
X277 : JR : GRAV-2 
X281 : JV : GRAVH-3 
X345 : MH : WA.eneg 

3 

Y =  0.312654553 * X26 
+ 2.629675114 * X94 
- 1.401918491 * X144 
- 1.502764637 * X165 
- 116.167215005 * X167 
+ 66.429804381 * X175 
- 7.847220091 * X228 
- 21.154896743 * X277 
+ 125.332874970 * X281 
+ 1.696580396 * X293 
- 602.797141503 

X26 : AA : Polarizability 
X94 : CQ : SP-7 
X144 : EO : maxHBint5 
X165 : FJ : ETA_dAlpha_B 
X167 : FL : ETA_Epsilon_2 
X175 : FT : ETA_Psi_1 
X228 : HU : n5Ring 
X277 : JR : GRAV-2 
X281 : JV : GRAVH-3 
X293 : KH : MOMI-R 

4 

Y =  0.336800494 * X26 
+ 2.942208255 * X94 
- 0.640140511 * X108 
- 1.579876967 * X144 
- 1.116608578 * X165 
+ 81.907227030 * X175 
- 8.260828699 * X228 
- 14.048865479 * X277 
+ 82.359135734 * X281 
+ 2.468795662 * X293 
- 413.254169614 

X26 : AA : Polarizability 
X94 : CQ : SP-7 
X108 : DE : nHBa 
X144 : EO : maxHBint5 
X165 : FJ : ETA_dAlpha_B 
X175 : FT : ETA_Psi_1 
X228 : HU : n5Ring 
X277 : JR : GRAV-2 
X281 : JV : GRAVH-3 
X293 : KH : MOMI-R 

5 

Y =  0.334445535 * X26 
- 1.292560192 * X35 
+ 2.861556067 * X94 
- 1.304920784 * X144 
- 1.234903575 * X165 
- 136.309059489 * X177 
- 8.316100485 * X228 
- 17.174253798 * X277 
+ 96.839460363 * X281 
+ 2.237066146 * X293 
- 454.420645683 

X26 : AA : Polarizability 
X35 : AJ : apol 
X94 : CQ : SP-7 
X144 : EO : maxHBint5 
X165 : FJ : ETA_dAlpha_B 
X177 : FV : ETA_dPsi_B 
X228 : HU : n5Ring 
X277 : JR : GRAV-2 
X281 : JV : GRAVH-3 
X293 : KH : MOMI-R 
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Table-4: the best model selected 
 

Model 1 Variables in the model 
Y =  0.317123855 * X26 
+ 2.673194291 * X94 
- 1.361102037 * X144 
- 1.453070371 * X165 
- 96.631409262 * X167 
+ 69.872692578 * X170 
- 7.877708429 * X228 
- 21.439713345 * X277 
+ 124.942300592 * X281 
+ 1.835776438 * X293 
- 631.436918720 

X26 : Polarizability 
X94 : SP-7 
X144 : maxHBint5 
X165 : ETA_dAlpha_B 
X167 : ETA_Epsilon_2 
X170 : ETA_Epsilon_5 
X228 : n5Ring 
X277 : GRAV-2 
X281 : GRAVH-3 
X293 : MOMI-R 

 
Table-5.Chemical names along with the observed and calculated toxicity values in pEC50 of  the training set compounds 

 
S/N Chemical name Actual values  Predicted values Residual values 
1 1,2,3,7,8 pentachlorodibenzo-p-dioxin 7.10000000 6.89480200 0.205198 
2 2,3,6,7 Tetrachlorodibenzo-p-dioxin 6.80000000 6.57743100 0.222569 
3 2,3,6 Trichlorodibenzo-p-dioxin 6.66000000 6.76089900 -0.100899 
4 1,2,3,4,7,8Hexachlorodibenzo-p-dioxin 6.55000000 6.44193700 0.108063 
5 1,3,7,8 Tetrachlorodibenzo-p-dioxin 6.10000000 6.11652600 -0.016526 
6 1,2,4,7,8 pentachlorodibenzo--dioxin 5.96000000 6.19664600 -0.236646 
7 1,2,3,4 Tetrachlorodibenzo-p-dioxin 5.89000000 6.28801600 -0.398016 
8 2,3,7 Trichlorodibenzo-p-dioxin 7.15000000 6.86770100 0.282299 
9 1,2,4 Trichlorodibenzo-p-dioxin 4.89000000 4.88714900 0.002851 
10 2,8-dichlorodibenzo-p-dioxin 5.49000000 5.15069900 0.339301 
11 1,2,3,4,6,7,8,9-Octachlorodibenzo-o-dioxin 5.00000000 5.14484700 -0.144847 
12 1-chlorodibenzo-p-dioxin 4.00000000 4.24100500 -0.241005 
13 2,3,7,8 Tetrabromodibenzo-p-dioxin 8.82000000 9.40408400 -0.584084 
14 2,3-Dibromo 7,8-chlorodibenzo-p-dioxin 8.83000000 8.99649900 -0.166499 
15 2,8- Dibromo -3,7-dichlorodibenzo-p-dioxin 9.35000000 9.06707700 0.282923 
16 2-Bromo-3,7,8-trichlorodibenzo-p-dioxin 7.94000000 8.30822700 -0.368227 
17 1,3,7,9-Tetrabromodibenzo-p-dioxin 7.03000000 7.26343800 -0.233438 
18 1,3,7,8-Tetrabromodibenzo-p-dioxin 8.70000000 8.47020000 0.229800 
19 1,2,4,7,8-Pentabromodibenzo-p-dioxin 7.77000000 7.42604000 0.343960 
20 1,2,3,7,8-Pentabromodibenzo-p-dioxin 8.18000000 8.09153100 0.088469 
21 2,7-Dibromodibenzo-p-dioxin 7.81000000 7.82283900 -0.012839 
22 2-Bromodibenzo-p-dioxin 6.53000000 6.15431200 0.375688 
23 1-chlorodibenzofuran 4.53000000 4.36064600 0.169354 
24 2-chlorodibenzofuran 3.55000000 4.22833800 -0.678338 
25 3-chlorodibenzofuran 4.38000000 4.10933400 0.270666 
26 4-chlorodibenzofuran 3.00000000 3.01669200 -0.016692 
27 2,3-Dichlorodibenzofuran 5.36000000 5.63232200 -0.272322 
28 1,3,6-Trichlorodibenzofuran 5.36000000 5.30147400 0.058526 
29 1,3,8-Trichlorodibenzofuran 4.07000000 4.56537300 -0.495373 
30 2,3,7-Trichlorodibenzofuran 7.10000000 6.96629000 0.133710 
31 2,3,4,8-Tetrachlorodibenzofuran 6.70000000 6.40437800 0.295622 
32 2,3,7,8-Tetrachlorodibenzofuran 7.39000000 7.77433500 -0.384335 
33 1,2,3,7,8-Pentachlorodibenzofuran 7.13000000 6.97671300 0.153287 
34 1,2,4,7,8-Pentachlorodibenzofuran 5.89000000 5.69544900 0.194551 
35 2,3,4,7,8-Pentachlorodibenzofuran 7.82000000 7.82693800 -0.006938 
36 1,2,3,4,7,8-Hexachlorobenzofuran 6.64000000 6.83519100 -0.195191 
37 1,2,3,6,7,8-Hexachlorobenzofuran 6.57000000 6.76563400 -0.195634 
38 2,3,4,6,7,8-Hexachlorobenzofuran 7.33000000 7.51370700 -0.183707 
39 2,3,6,8-Tetrachlorodibenzofuran 6.66000000 6.24406500 0.415935 
40 1,2,3,7-Tetrachlorodibenzofuran 6.96000000 6.86559800 0.094402 
41 2,3,4,7,9-Pentachlorodibenzofuran 6.70000000 6.37662100 0.323379 
42 1,2,3,7,9-Pentachlorodibenzofuran 6.40000000 6.39655100 0.003449 
43 Dibenzofuran 3.00000000 2.89483700 0.105163 
44 2,3,4,7-Tetrachlorobiphenyl 7.60000000 7.48510400 0.114896 
45 1,2,4,6,8-Pentachlorobiphenyl 5.51000000 5.31940200 0.190598 
46 2,3,4,4’-Tetrachlorobiphenyl 4.94000000 4.94644900 -0.006449 
47 3,3’,4,4’-Tetrachlorobiphenyl 6.15000000 6.06549900 0.084501 
48 3,3’4,4’5-Pentachlorobiphenyl 6.92000000 6.42820400 0.491796 
49 2,3,3’,4,4’,5-Hexachlorobiphenyl 5.15000000 5.63058300 -0.480583 
50 2,3,3’,4,4’,5’-Hexachlorobiphenyl 5.30000000 5.42050100 -0.120501 
51 2,3,4,5-Tetrachlorobiphenyl 3.85000000 3.89186900 -0.041869 
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Table-6. Chemical names along with the observed and the calculated toxicities of the test set compounds expressed in logEC50 

 

S/N Compound names Actual values 

Predicted values 

Residual values 

1 2,3,7,8 Tetrachlorodibenzo-p-dioxin       8.00 7.137742 0.862258 
2 1,2,3,4,7 pentachlorodibenzo-p-dioxin       5.19 6.416795 -1.2468 
3 2,3,7-Tribromodibenzo-p-dioxin       8.93 9.433407 -0.50341 
4 2,6-dichlorodibenzofuran       3.61 5.33345 -1.72345 
5 2,8-Dichlorodibenzofuran       5.05 5.814313 -0.76431 
6 2,3,4-Trichlorodibenzofuran       4.72 6.341931 -1.62193 
7 2,3,8-Trichlorodibenzofuran       6.00 6.078967 -0.07897 
8 2,6,7 Trichlorodibenzofuran       6.35 5.891172 0.458828 
9 2,3,4,6 Tetrachlorodibenzofuran       6.46 6.643481 -0.18348 
10 1,2,4,8-Tetrachlorodibenzofuran       5.00 5.764051 -0.76405 
11 1,2,4,7,9-Pentachlorodibenzofuran       4.7 4.070704 0.629296 
12 1,2,4,6,7,9-Hexachlorodibenzofaran       5.08 3.868581 1.211419 
13 1,2,3,6-Tetrachlorodibenzofuran       6.46 6.216 0.244 
14 1,3,4,7,8-Pentachlorodibenzofuran       6.70 6.636922 0.063078 
15 3,4,4’,5-Tetrachlorobiphenyl       4.55 5.973791 -1.42379 
16 2’,3,4,4’,5-Pentachlorobiphenyl       4.85 4.9348 -0.0848 
17 2,3,3’,4,4’-Pentachlorobiphenyl       5.37 5.668328 -0.29833 
18 2,3’,4,4’,5-Pentachlorobiphenyl       5.04 5.392424 -0.35242 
19 2,3,4,4’,5-Pentachlorobiphenyl       5.39 5.43461 -0.04461 
20 2,2’4,4’,5,5’-Hexachlorobiphenyl       4.26 4.397758 -0.13776 
21 2,3’,4,4’,5,5’-Hexachlorobiphenyl      4.80 4.397758 0.402242 
22 2,2’,4,4’-Tetrachlorobiphenyl      3.89 4.710143 -0.82014 
23 2,3’,4,4’,5’,6-Hexachlorobiphenyl      4.00 3.366028 0.633972 

 
Table-7. Statistical/validation parameters of the generated models 

 
Statistical parameters Model 1 Model 2 Model 3 Model 4 Model 5 
Friedman LOF 0.437664 0.439352 0.440601 0.443745 0.443884 
R-squared 0.967342 0.967217 0.967123 0.966889 0.966878 
Adjusted R-squared 0.959178 0.959021 0.958904 0.958611 0.958598 
Cross validated R-squared 0.940154 0.923084 0.937807 0.933100 0.937382 
Significant Regression Yes Yes Yes Yes Yes 
Significance-of-regression F-value 118.48328 118.012638 117.666633 116.80482 116.7668 
Critical SOR F-value (95%) 2.080618 2.080618 2.080618 2.080618 2.080618 
Replicate points 0 0 0 0 0 
Computed experimental error 0.000000 0.000000 0.000000 0.000000 0.000000 
Lack-of-fit points 40 40 40 40 40 
Min expt. error for non-significant LOF (95%) 0.257926 0.258423 0.258790 0.259712 0.259752 

 
Table-8: Univariate analysis of the toxicity data 

 
 Statistical parameter values 
Number of sample points 51 
Range 6.35000000 
Maximum 9.35000000 
Minimum 3 
Mean 6.28450980 
Median 6.57000000 
Variance 2.23024000 
Standard deviation 1.50826000 
Mean absolute deviation 1.21134000 
Skewness -0.26949300 
Kurtosis -0.48857800 
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Table-9 values of the descriptors used in the selected model 
 

S/N p SP-7 minHBint5 ETA_dAlpha_B ETA_Epsilon_2 ETA_Epsilon_5 n5Ring GRAV-2 GRAVH-3 MOMI-R 
1 61.63 7.185 0.8984 22.9790 0.5291 0.871 0.4444 42.242 12.218 6.9852 
2 61.63 7.849 0.9207 27.0342 0.53885 0.871 0.4444 43.892 12.507 7.2141 
3 59.39 8.003 0.9321 27.321 0.53885 0.7723 0.4444 43.893 12.506 7.0553 
4 62.75 6.738 0.8647 19.581 0.51821 0.9203 0.375 40.525 11.916 6.4812 
5 60.51 8.526 0.9543 31.143 0.54762 0.8216 0.4444 45.483 12.782 7.4407 
6 61.63 6.983 0.9049 23.201 0.5291 0.871 0.4444 42.243 12.218 6.9739 
7 59.4 7.734 0.9322 27.2260 0.53885 0.7722 0.4444 43.893 12.507 7.2520 
8 60.53 6.600 0.8414 19.2939 0.51821 0.8216 0.4444 40.525 11.916 6.4875 
9 59.38 7.604 0.8636 23.8245 0.5291 0.7723 0.375 42.242 12.218 6.4679 
10 58.28 7.940 0.8973 27.4095 0.53885 0.7229 0.4444 43.893 12.507 7.0710 
11 64.96 6.813 0.8413 19.9452 0.51821 1.0191 0.5 40.525 11.915 6.2940 
12 57.13 6.015 0.8191 15.6297 0.50595 0.6736 0.5 38.732 11.597 6.2049 
13 61.99 9.866 1.1305 39.4347 0.5628 0.7091 0.4444 48.507 13.301 7.6460 
14 61.25 5.817 0.7918 12.3852 0.49206 0.7654 0.4286 36.851 11.259 5.4654 
15 61.24 7.185 0.9407 14.8188 0.66667 0.7654 0.4444 47.829 13.252 7.9693 
16 60.88 7.185 0.9119 18.8989 0.59788 0.7935 0.4444 45.122 12.756 7.4719 
17 61.98 7.185 0.9154 18.899 0.59788 0.7091 0.4444 45.122 12.756 7.5033 
18 61.82 7.185 0.9042 20.9390 0.56349 0.7091 0.4444 43.706 12.493 7.2480 
19 63.51 6.781 0.9790 15.0493 0.66667 0.7303 0.5 47.829 13.251 7.9030 
20 63.55 6.983 0.9493 14.9323 0.66667 0.7303 0.4444 47.829 13.252 7.9577 
21 59.01 7.734 0.9857 16.8090 0.70175 0.6667 0.4444 50.553 13.725 8.2323 
22 57.5 7.850 0.9708 16.7255 0.70175 0.6455 0.4444 50.552 13.724 8.242 
23 56.4 6.600 0.8661 13.1738 0.62745 0.6358 0.4444 44.941 12.742 7.4339 
24 56.42 6.015 0.8446 11.5452 0.58333 0.6358 0.4444 41.854 12.189 6.4238 
25 56.42 5.818 0.7997 10.2368 0.53333 0.6358 0.4285 38.520 11.580 5.6197 
26 50.4 5.504 0.9954 8.35188 0.5034 0.6358 0.3333 36.569 11.204 5.0549 
27 57.55 5.433 0.9840 8.02229 0.5034 0.6875 0.4285 36.569 11.204 5.2679 
28 58.66 5.427 0.9840 7.96089 0.5034 0.7392 0.4285 36.569 11.204 5.1256 
29 58.7 5.570 0.9954 8.26993 0.5034 0.7392 0.3333 36.569 11.204 5.1663 
30 58,7 6.019 1.0063 11.6458 0.51746 0.7392 0.4286 38.464 11.545 5.6225 
31 59.81 5.913 1.0291 11.8161 0.51746 0.7909 0.4285 38.463 11.545 5.7123 
32 59.82 5.776 1.0177 11.6102 0.51746 0.7909 0.4286 38.464 11.545 6.0089 
33 60.93 6.228 1.1096 15.8458 0.52976 0.8426 0.4286 40.269 11.867 6.1781 
34 60.94 6.091 1.0514 15.6334 0.52976 0.8426 0.5 40.269 11.867 6.1080 
35 60.78 6.689 1.0399 15.7116 0.52976 0.8426 0.4285 40.269 11.867 5.9662 
36 62.05 6.354 1.0634 15.2198 0.52976 0.8943 0.375 40.269 11.866 6.1495 
37 62.04 6.361 1.0399 15.3223 0.52976 0.8943 0.5 40.269 11.866 6.2819 
38 62.04 6.513 1.0513 15.5286 0.52976 0.8943 0.5 40.269 11.866 6.0816 
39 59.81 7.168 1.1589 19.6480 0.54062 0.7909 0.4286 41.997 12.171 6.3935 
40 59.81 7.031 1.0736 19.4259 0.54062 0.7909 0.5 41.996 12.172 6.5899 
41 60.93 6.946 1.0970 19.0551 0.54062 0.8426 0.375 41.996 12.171 6.6103 
42 60.93 6.853 1.0850 19.8096 0.54062 0.8426 0.4285 41.996 12.172 6.4965 
43 55.27 7.174 1.1656 23.9134 0.55027 0.5841 0.5 43.656 12.462 6.6331 
44 59.81 7.548 1.1307 23.3562 0.55027 0.7909 0.375 43.656 12.462 6.6939 
45 60.95 7.438 1.1421 23.5761 0.55027 0.8426 0.5 43.656 12.462 6.8714 
46 59.83 7.616 1.1307 23.1860 0.55027 0.8426 0.375 43.656 12.462 6.9490 
47 59.97 8.230 1.1644 27.5404 0.5589 0.7156 0.375 45.255 12.740 7.0311 
48 61.09 8.218 1.1878 27.5241 0.5589 0.7649 0.375 45.255 12.740 7.0098 
49 62.16 8.287 1.2497 27.3540 0.5589 0.8143 0.375 45.255 12.740 7.1719 
50 62.04 7.930 1.2611 28.0611 0.5589 0.8143 0.5 45.255 12.740 6.8331 
51 59.83 6.750 1.1085 19.3050 0.54062 0.7155 0.5 41.996 12.172 6.8053 
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Table-10: definition of descriptors that were found in the 5 models 
 

     Descriptor                                             Definition 
Polarizability Determine the dynamical response of a bound system to external fields, and provide insight into a molecule's internal 

structure. 
SP-7 Chi path descriptor with a simple path order 7 
MaxHBint5 Maximum E-state descriptor of strength for potential hydrogen bonds of path length 5 
ETA_dApha_B Extended Topochemical Atomic descriptor which is defined as a measure of count of hydrogen bond acceptor atoms and/or 

polar surface area 
ETA_Epsilon_2 Extended Topochemical Atomic descriptor which is defined as a measure of electronegative atom count 2 
ETA_Epsilon_5 Extended Topochemical Atomic descriptor which is defined as a measure of electronegative atom count 5 
n5Ring Ring count descriptor which indicates 5 member rings 
GRAV_2 Gravitational index descriptor which is defined as square root of gravitational index of heavy atom 
GRAVH_3 Gravitational index descriptor which is defined as cube root of hydrogen-included gravitational index 
MOMI-R Moment of initia along the radius of gyration 
ETA_psi_1 Measure of hydrogen bond propensity the molecules and/or polar surface area. 
WA.eng Non directional WHIM, weighted by Mulliken atomic electronegativites 
apol Sum of atomic polarizabilities (including implicit hydrogen) 
nHBa Electrotopological state atom type descriptor which is defined as count of E-state for hydrogen bond acceptors  
ETA_dpsi_B Measure of hydrogen bonding propensity of the molecules 
 

Table-11: The definition of the descriptors used in model-1 and their regression coefficients 
 

Descriptor 
notation 

         Definition Regression 
coefficient 

Polarizability (p)  Determine the dynamical response of a bound system to external fields, and provide insight into a 
molecule's internal structure. 

0.317123855 

SP-7 Chi path descriptor with a simple path order 7 2.673194291 
MaxHBint5 Maximum E-state descriptor of strength for potential hydrogen bonds of path length 5 -1.36110204 
ETA_dApha_B Extended Topochemical Atomic descriptor which is defined as a measure of count of hydrogen bond 

acceptor atoms and/or polar surface area 
-1.45307037 

ETA_Epsilon_2 Extended Topochemical Atomic descriptor which is defined as a measure of electronegative atom 
count 2 

-96.6314093 

ETA_Epsilon_5 Extended Topochemical Atomic descriptor which is defined as a measure of electronegative atom 
count 5 

69.8726926 

n5Ring Ring count descriptor which indicates 5 member rings -7.87770843 
GRAV_2 Gravitational index descriptor which is defined as square root of gravitational index of heavy atom -21.4397133 
GRAVH_3 Gravitational index descriptor which is defined as cube root of hydrogen-included gravitational index 124.9423006 
MOMI-R Moment of initia along the radius of gyration 1.835776438 
 

 

 
Fig. 2: Linear relationship of observed and predicted toxicities of data of the training set 
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. 
 

Fig. 3: Linear relationship of observed and predicted toxicities of data of the test set 
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Fig.4. residual versus actual values 
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as the best on the basis of the various statistical parameters reported in Table-7. Table-5 shows the predicted 
toxicities of the training set in pEC50 which has a good agreement with the experimental toxicities. Table-6 reported 
the predicted toxicities of test set for external validation with which the predicted (R2

pred.) was calculated as 0.7209 
and is in excellent agreement with criteria reported in Table-2 
 
Table-7 shows the statistical/validation parameters of all the 5 models. The statistical quality of the models were 
determined by the validation parameters like LOF which is the measure of quality of fit, R2, R2

adj.,R
2
cv, F-test and 

the larger the value the better the model and the external validation parameter R2
pred. The statistical parameters 
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model-1 appear to be statistically better than those of the other models. For model-1: LOF=0.4377, R2 = 0.9673, 
R2

adj. = 0.9592, R2cv = 0.9402, F-test = 118.48 and R2
pred. = 0.7209. All of these parameters are in a very good 

agreement with criteria reported in Table-2 
 
Table-8 shows the statistical parameters of univariate analysis that describe the toxicity data. The most important 
parameters here are skewness and kurtosis. Skewness is the third moment of the distribution, which indicates the 
symmetry of distribution. As skewness is positive, the distribution of data value within the column is skewed toward 
positive values. For a symmetry distribution, the skewness is close to zero. Kurtosis is the fourth moment of the 
distribution which indicates the profile of the column of data relative to normal distribution [32]. 
 
Descriptor contribution 
(Huifeng et al., 2011) reported that radius of gyration (RGyr) and Ist component accessibilities directional 
index/weight by atomic polarizabilities (EIp) are among the descriptors that are responsible for producing toxicties of 
polychlorinated aromatic compounds. Another previous work by (Nandan et al., 2013) shown that the descriptors 
Winner index (W), Balban index (J), polarizability (α) and index of refraction (η) have high responsibilities in 
producing toxicity of some polychlorinated aromatic compounds. 
 
The present QSAR model study reveals that apart from the descriptors reported by (Huifeng et al., 2011; Nandan et 
al., 2013) which are responsible for producing toxicity of polychlorinated aromatic compounds, other descriptors 
were also found to be responsible for producing toxicity of polychlorinated aromatic compounds. Among these 
descriptors, Polarizability, SP-7, ETA_Epsilon_5, GRAVH_3, and MOMI-R which are used in model-1 contribute 
positively in producing toxicities of polychlorinated aromatic compounds. This indicate a positive impact on the 
toxicities of polychlorinated aromatic compounds, which means increasing the value of this descriptors produces 
higher toxicities of these compounds. In the other hand, the descriptors maxHBint5, ETA_dApha_B, 
ETA_Epsilon_2, n5Ring and GRAV_2 with negative coefficient used in model-1 contribute negatively, hence 
decreasing the values of these descriptors will provide higher toxicities of polychlorinated aromatic compounds. The 
interpretation of this model shows that each of these descriptors with positive coefficient is directly proportional to 
the toxicities of these molecules while each of those descriptors with negative coefficient is inversely proportional to 
the toxicities of the molecules [33]. Model-1 is presented in Table-4 and the descriptors used in model-1 are listed in 
Table-8. It is observed that both in this work and the once reported by (Huifeng et al., 2011; Nandan et al., 2013 
polarizability and radius of gyration (RGyr) contribute in producing toxicity of polychlorinated aromatic 
compounds.  
 
Figure-2 shows a plot describing the linear relationship between the experimental values in pEC50 and the calculated 
values. Most of the compounds of the training set are along the linear line of the plot. This indicates that the 
predicted values of pEC50 are in agreement with the experimental values. But for the test set, whose imprecise 
toxicity data were reported as shown in Figure-3, errors are higher than the training set. Figure 4 shows the plot of 
residuals versus experimental values of data set. The propagation of residuals on both sides of zero indicates that no 
systematic error exists in the development of GFA. 
 

CONCLUSION 
 

A genetic function approximation method was used to run the regression analysis and establish correlation’s 
between different types of descriptors and experimental toxicity of three classes of polychlorinated aromatic 
(PCDDs, PCDFs and PCBs). QSAR models were developed and one of them was used to predict the toxicity 
efficiency of polychlorinated aromatic compounds. The prediction of toxicity efficiencies of these compounds 
matched with the experimental measurements. The developed models were found to be statistically significant as 
evidenced from their regression statistics. 
 
Out of about 1700 molecular descriptors generated only these few were found to be the once responsible for 
producing toxicity of poly. These descriptors include: polalizability, Chi path descriptor with a simple path length 
order 7 (SP-7), Extended Topochemical Atomic descriptor (ETA_Epsilon_5) which is the measure of 
electronegative atom count 5, cubic root of hydrogen-included gravitational index (GRAVH-3) and moment of initia 
along the radius of gyration (MOMI-R). All the calculated molecular descriptors were aimed to encode some 
important information about the structural features of polychlorinated aromatic compounds which could influence 
the receptor binding affinity. Some of them provided good correlations and statistically reliable models. 
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